Java基础-集合类-哈希

Java工程师知识树 / Java基础


什么是 Hash

Hash(哈希),又称“散列”。
散列(hash)英文原意是“混杂”、“拼凑”、“重新表述”的意思。
在某种程度上,散列是与排序相反的一种操作,排序是将集合中的元素按照某种方式比如字典顺序排列在一起,而散列通过计算哈希值,打破元素之间原有的关系,使集合中的元素按照散列函数的分类进行排列。
在介绍一些集合时,我们总强调需要重写某个类的 equlas() 方法和 hashCode() 方法,确保唯一性。这里的 hashCode() 表示的是对当前对象的唯一标示。计算 hashCode 的过程就称作 哈希。

为什么要有 Hash

我们通常使用数组或者链表来存储元素,一旦存储的内容数量特别多,需要占用很大的空间,而且在查找某个元素是否存在的过程中,数组和链表都需要挨个循环比较,而通过 哈希 计算,可以大大减少比较次数。

举例:
现在有 4 个数 {2,5,9,13},需要查找 13 是否存在。

1.使用数组存储,需要新建个数组 new int[]{2,5,9,13},然后需要写个循环遍历查找:

int[] numbers = new int[]{2,5,9,13};
for (int i = 0; i < numbers.length; i++) {
    if (numbers[i] == 13){
         System.out.println("find it!");
         return;
    }
}

这样需要遍历 4 次才能找到,时间复杂度为 O(n)。

2.而假如存储时先使用哈希函数进行计算,这里我随便用个函数:

 H[key] = key % 3;

四个数 {2,5,9,13} 对应的哈希值为:

 H[2] = 2 % 3 = 2;
 H[5] = 5 % 3 = 2;
 H[9] = 9 % 3 = 0;
 H[13] = 13 % 3 = 1;

然后把它们存储到对应的位置。

当要查找13时,只要先使用哈希函数计算它的位置,然后去那个位置查看是否存在就好了,本例中只需查找一次,时间复杂度为 O(1)。

因此可以发现,哈希 其实是随机存储的一种优化,先进行分类,然后查找时按照这个对象的分类去找。
哈希通过一次计算大幅度缩小查找范围,自然比从全部数据里查找速度要快。
比如你和我一样是个剁手族买书狂,家里书一大堆,如果书存放时不分类直接摆到书架上(数组存储),找某本书时可能需要脑袋从左往右从上往下转好几圈才能发现;如果存放时按照类别分开放,技术书、小说、文学等等分开(按照某种哈希函数计算),找书时只要从它对应的分类里找,自然省事多了。

哈希函数

哈希的过程中需要使用哈希函数进行计算。
哈希函数是一种映射关系,根据数据的关键词 key ,通过一定的函数关系,计算出该元素存储位置的函数。
表示为:address = H [key]

几种常见的哈希函数(散列函数)构造方法

名称示例图描述
直接定址法取关键字或关键字的某个线性函数值为散列地址。 即 H(key) = key 或 H(key) = a*key + b,其中a和b为常数。
除留余数法取关键字被某个不大于散列表长度 m 的数 p 求余,得到的作为散列地址。 即 H(key) = key % p, p < m。
数字分析法当关键字的位数大于地址的位数,对关键字的各位分布进行分析,选出分布均匀的任意几位作为散列地址。 仅适用于所有关键字都已知的情况下,根据实际应用确定要选取的部分,尽量避免发生冲突。
平方取中法先计算出关键字值的平方,然后取平方值中间几位作为散列地址。 随机分布的关键字,得到的散列地址也是随机分布的。
折叠法(叠加法)将关键字分为位数相同的几部分,然后取这几部分的叠加和(舍去进位)作为散列地址。 用于关键字位数较多,并且关键字中每一位上数字分布大致均匀。
随机数法选择一个随机函数,把关键字的随机函数值作为它的哈希值。 通常当关键字的长度不等时用这种方法。

哈希函数(散列函数)构造方法总结:
构造哈希函数的方法很多,实际工作中要根据不同的情况选择合适的方法,总的原则是尽可能少的产生冲突。
通常考虑的因素有关键字的长度和分布情况、哈希值的范围等。
如:当关键字是整数类型时就可以用除留余数法;如果关键字是小数类型,选择随机数法会比较好。

哈希冲突的解决

现象:选用哈希函数计算哈希值时,可能不同的 key 会得到相同的结果,一个地址怎么存放多个数据呢?这就是冲突。

常用的主要有两种方法解决冲突:

1.链接法(拉链法)

拉链法解决冲突的做法是:
将所有关键字为同义词的结点链接在同一个单链表中。

若选定的散列表长度为 m,则可将散列表定义为一个由 m 个头指针组成的指针数组 T[0…m-1] 。

凡是散列地址为 i 的结点,均插入到以 T[i] 为头指针的单链表中。
T 中各分量的初值均应为空指针。

在拉链法中,装填因子 α 可以大于 1,但一般均取 α ≤ 1。

2.开放定址法

用开放定址法解决冲突的做法是:
当冲突发生时,使用某种探测技术在散列表中形成一个探测序列。沿此序列逐个单元地查找,直到找到给定的关键字,或者碰到一个开放的地址(即该地址单元为空)为止(若要插入,在探查到开放的地址,则可将待插入的新结点存人该地址单元)。查找时探测到开放的地址则表明表中无待查的关键字,即查找失败。

简单的说:当冲突发生时,使用某种探查(亦称探测)技术在散列表中寻找下一个空的散列地址,只要散列表足够大,空的散列地址总能找到。

按照形成探查序列的方法不同,可将开放定址法区分为线性探查法、二次探查法、双重散列法等。

a.线性探查法
hi=(h(key)+i) % m ,0 ≤ i ≤ m-1

基本思想是:
探查时从地址 d 开始,首先探查 T[d],然后依次探查 T[d+1],…,直到 T[m-1],此后又循环到 T[0],T[1],…,直到探查到 有空余地址 或者到 T[d-1]为止。

b.二次探查法
hi=(h(key)+i*i) % m,0 ≤ i ≤ m-1

基本思想是:
探查时从地址 d 开始,首先探查 T[d],然后依次探查 T[d+12],T[d+22],T[d+3^2],…,等,直到探查到 有空余地址 或者到 T[d-1]为止。

缺点是无法探查到整个散列空间。

c.双重散列法
hi=(h(key)+i*h1(key)) % m,0 ≤ i ≤ m-1

基本思想是:
探查时从地址 d 开始,首先探查 T[d],然后依次探查 T[d+h1(d)], T[d + 2*h1(d)],…,等。

该方法使用了两个散列函数 h(key) 和 h1(key),故也称为双散列函数探查法。

定义 h1(key) 的方法较多,但无论采用什么方法定义,都必须使 h1(key) 的值和 m 互素,才能使发生冲突的同义词地址均匀地分布在整个表中,否则可能造成同义词地址的循环计算。

该方法是开放定址法中最好的方法之一。

哈希的应用

  • 哈希表
  • 分布式缓存

哈希表(散列表)

哈希表(hash table)是哈希函数最主要的应用。

哈希表是实现关联数组(associative array)的一种数据结构,广泛应用于实现数据的快速查找。

用哈希函数计算关键字的哈希值(hash value),通过哈希值这个索引就可以找到关键字的存储位置,即桶(bucket)。哈希表不同于二叉树、栈、序列的数据结构一般情况下,在哈希表上的插入、查找、删除等操作的时间复杂度是 O(1)。

查找过程中,关键字的比较次数,取决于产生冲突的多少,产生的冲突少,查找效率就高,产生的冲突多,查找效率就低。因此,影响产生冲突多少的因素,也就是影响查找效率的因素。
影响产生冲突多少有以下三个因素:

  1. 哈希函数是否均匀;
  2. 处理冲突的方法;
  3. 哈希表的加载因子。

哈希表的加载因子是表示哈希表中元素的填满程度。加载因子和容量决定了在什么时候桶数(存储位置)不够,需要重新哈希。

加载因子 = 填入表中的元素个数 / 散列表的长度

  • 加载因子越大,填满的元素越多,空间利用率越高,但发生冲突的机会变大了;

  • 加载因子越小,填满的元素越少,冲突发生的机会减小,但空间浪费了更多了,而且还会提高扩容rehash操作的次数。

冲突的机会越大,说明需要查找的数据还需要通过另一个途径查找,这样查找的成本就越高。因此,必须在“冲突的机会”与“空间利用率”之间,寻找一种平衡与折衷。

在 HashMap 中的加载因子为 0.75,即四分之三。

为什么HashMap加载因子一定是0.75?而不是0.8,0.6?

HashMap的底层是哈希表(散列表),而解决冲突的方式是链地址法。

HashMap的初始容量大小默认是16,为了减少冲突发生的概率,当HashMap的数组长度到达一个临界值的时候,就会触发扩容,把所有元素rehash之后再放在扩容后的容器中,这是一个相当耗时的操作。

而这个临界值就是由加载因子和当前容器的容量大小来确定的:

临界值 = DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR
即默认情况下是16x0.75=12时,就会触发扩容操作。

那么为什么选择了0.75作为HashMap的加载因子呢?这个跟一个统计学里很重要的原理——泊松分布有关
**泊松分布就是描述某段时间内,事件具体的发生概率。**具体公式为:
等号的左边,P 表示概率,N表示某种函数关系,t 表示时间,n 表示数量。等号的右边,λ 表示事件的频率。

在HashMap的源码中有这么一段注释:(这个就是)

* Ideally, under random hashCodes, the frequency of
* nodes in bins follows a Poisson distribution
* (http://en.wikipedia.org/wiki/Poisson_distribution) with a
* parameter of about 0.5 on average for the default resizing
* threshold of 0.75, although with a large variance because of
* resizing granularity. Ignoring variance, the expected
* occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
* factorial(k)). The first values are:
* 0:    0.60653066
* 1:    0.30326533
* 2:    0.07581633
* 3:    0.01263606
* 4:    0.00157952
* 5:    0.00015795
* 6:    0.00001316
* 7:    0.00000094
* 8:    0.00000006
* more: less than 1 in ten million

在理想情况下,使用随机哈希码,在扩容阈值(加载因子)为0.75的情况下,节点出现在频率在Hash桶(表)中遵循参数平均为0.5的泊松分布。忽略方差,即X = λt,P(λt = k),其中λt = 0.5的情况,按公式:

计算结果如上述的列表所示,当一个bin中的链表长度达到8个元素的时候,概率为0.00000006,几乎是一个不可能事件。

那么为什么不可以是0.8或者0.6呢?

HashMap中除了哈希算法之外,有两个参数影响了性能:初始容量和加载因子。初始容量是哈希表在创建时的容量,加载因子是哈希表在其容量自动扩容之前可以达到多满的一种度量。

在维基百科来描述加载因子:

对于开放定址法,加载因子是特别重要因素,应严格限制在0.7-0.8以下。超过0.8,查表时的CPU缓存不命中(cache missing)按照指数曲线上升。因此,一些采用开放定址法的hash库,如Java的系统库限制了加载因子为0.75,超过此值将resize散列表。
在设置初始容量时应该考虑到映射中所需的条目数及其加载因子,以便最大限度地减少扩容rehash操作次数,所以,一般在使用HashMap时建议根据预估值设置初始容量,以便减少扩容操作。

选择0.75作为默认的加载因子,完全是时间和空间成本上寻求的一种折衷选择。

分布式缓存

网络环境下的分布式缓存系统一般基于一致性哈希(Consistent hashing)。简单的说,一致性哈希将哈希值取值空间组织成一个虚拟的环,各个服务器与数据关键字K使用相同的哈希函数映射到这个环上,数据会存储在它顺时针“游走”遇到的第一个服务器。可以使每个服务器节点的负载相对均衡,很大程度上避免资源的浪费。

在动态分布式缓存系统中,哈希算法的设计是关键点。使用分布更合理的算法可以使得多个服务节点间的负载相对均衡,可以很大程度上避免资源的浪费以及部分服务器过载。 使用带虚拟节点的一致性哈希算法,可以有效地降低服务硬件环境变化带来的数据迁移代价和风险,从而使分布式缓存系统更加高效稳定。